Removal Performance of SARS-CoV-2 in Wastewater by Membrane Bioreactor, Anaerobic-Anoxic-Oxic and Conventional Activated Sludge Processes

<u>Rongxuan Wang</u>^a, Md. Alamin ^b, Shohei Tsuji ^b, Hiroe Hara-Yamamura ^b, Akihiko Hata ^c, Bo Zhao ^d, Masaru Ihara ^d, ^e, Hiroaki Tanaka ^d, Ryo Honda ^{a, d} *

Background: potential risk of SARS-CoV-2 in wastewater

Figure 1. Accumulation of COVID-19 confirmed cases and death in the world. Circles show number of confirmed coronavirus cases per country.

Source derived from : Johns Hopkins University, national public health agencies Figures last updated 4 October 2021, 10:13 BST

Figure 2. surveillance of SARS-CoV-2 RNA in wastewater

100+

Source derived from : <u>https://covid-tracker.chi-csm.ca/</u> https://coronadashboard.government.nl/landelijk/rioolwater

Daily average:

Source: RIVM

Background: detection of SARS-CoV-2 in wastewater

Check for updates

Contents lists available at ScienceDirect

Science of the Total Environment

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

journal homepage: www.elsevier.com/locate/scitotenv

First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan

Eiji Haramoto^{a,*}, Bikash Malla^a, Ocean Thakali^b, Masaaki Kitajima^c

^a Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan ^b Environmental and Social System Science Course, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan ^c Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

HIGHLIGHTS

GRAPHICAL ABSTRACT

- · First environmental surveillance for SARS-CoV-2 RNA in Japan was carried out.
- · SARS-CoV-2 RNA was detected in a secondary-treated wastewater $(2.4 \times 10^3 \text{ copies/L}).$
- None of influent and river water samples tested positive for SARS-CoV-2 RNA.
- SARS-CoV-2 RNA was detected when the reported cases in the community were high.
- · Applicability of EMV method for detection of SARS-CoV-2 in water is demonstrated.

Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak Akihiko Hata^a, Hiroe Hara-Yamamura^b, Yuno Meuchi^a, Shota Imai^a, Ryo Honda^{b,c,*} ^a Faculty of Engineering, Toyama Prefectural University, Japan ^b Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan

GRAPHICAL ABSTRACT

^c Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan

HIGHLIGHTS

- Presence of SARS-CoV-2 RNA in wastewater was studied in two prefectures in Japan.
- · At the start of the study, no cases of COVID-19 had been reported in the study area.
- SARS-CoV-2 detection frequency increased along with the number of reported cases.
- SARS-CoV-2 was detected even when the number of cases was <1.0 per 100,000 people.
- The detection frequency remained high even after increase in the cases stopped.

SARS-CoV-2 in WWTP influent at 5 plants in 2 prefectures in Japan 3/20 positive 30.0

- SARS-CoV-2 RNA was DETECTED in wastewater in Japan
- SARS-CoV-2 RNA was quantified 2400 copies/L in an effluent of *secondary-treated wastewater*.
- * Presence of SARS-CoV-2 RNA was founded in wastewater In two Prefectures in Japan.
- Wastewater-based epidemiology (WBE) act as an early warning of **COVID-19** outbreaks in Japan

Background: nonenveloped virus and enveloped virus

Enveloped virus: Coronavirus, phi6, influenza virus, etc.

 differences between enveloped and nonenveloped virus (no enveloped protein carry) Non-enveloped virus: Norovirus, hepatitis E virus (HEV), hepatitis A virus (HAV), etc.

Created in biorender. com

RNA/DNA

Background: removal of nonenveloped virus in wastewater

Kumar et al., (2021) npj. Clean Water. https://doi.org/10.1038/s41545-021-00098-2

The typical concentration of influent

MBR: 10⁵ copies/L-10⁹ copies/L
CAS: 10² copies/L-10¹⁰ copies/L
A2O: 10¹ copies/L-10³ copies/L
After chlorination: 10² copies/L-10⁷ copies/L

• The concentration of effluent

MBR: 10² copies/L-10⁴ copies/L CAS: 10⁻¹ copies/L-10⁹ copies/L A2O: 10² copies/L After chlorination:10⁰ copies/L-10⁵ copies/L

SARS-CoV-2 is unknown

Fig. 2 Typical log removal values (LRVs) of viruses in the wastewater treatment process. CAS conventional activated sludge process, MBR membrane bioreactor process, A2O anaerobic-anoxic-oxic process, UV ultraviolet disinfection, MF microfiltration, UF ultrafiltration.

Objective: investigate removal of SARS-CoV-2 in real WWTP

- To clarify <u>removal performance</u> of <u>SARS-CoV-2</u> in real WWTPs.
- To compare removal performance of three secondary treatment processes (MBR, CAS, A2O) and chlorination in SARS-CoV-2 reduction.
- To evaluate applicability of <u>PMMoV</u> as a process control for <u>SARS-CoV-2</u> in wastewater.

Method: sampling information and population coverage

Table 1. flow rate in conventional activated sludge, membrane bioreactor and anaerobic anoxic oxic process

Flow rate		Until July	Unit	in August and later	Unit	
1st train (CAS+MBR) 24,000 m3 or 34,000 m3	1 st train	24,000	m3/d	34,000	m3/d	
2nd train (A2O) 38,000 m3/day	MBR	14,000	m3/d	14,000	m3/d	
flow ratio of CAS:MBR = 12000:10000	CAS	10,000	m3/d	20,000	m3/d	
flow ratio of 1st (MBR+CAS):2nd (A2O)= 240:380 until July	2nd train	38,000	m3/d	38,000	m3/d	
flow ratio of 1st (MBR+CAS):2nd (A2O)=340:380 since August						

Table 2. Data on population coverage of WWTPs in the target city

	Catchment area	Population coverage	Designed Population capacity (m3/y)	Coverage population (city)
Inf series	ha	persons	persons	person
WWTPs	4,281	270,104	276,735	840,000

Date: from May 28 to September 24, 2020

Sample volume: 250 mL of influent wastewater

10 L of secondary treatment effluents from CAS and MBR

9 samples of *influent* in each train, 9 samples in each process and 9 samples of *final effluent* of chlorination process

Method: detection of SARS-CoV-2 in the influent and effluent

Results: SARS-CoV-2 in Influent and COVID-19 confirmed cases

Figure 1. Comparison of SARS-CoV-2 RNA concentration in influent (log10 copies/L) and newly confirmed cases.

the Total concentration of SARS-CoV-2 RNA was <u>3.3-6.0 log copies/L</u> in influent

Results: LRV of CDCN1 after secondary treatment

Figure 2. Concentration of SARS-CoV-2 in influent was in related to concentration of SARS-CoV-2 in effluent (log10 copy/L). Blank stand in figure indicate that SARS-CoV-2 was positive in influent but negative in the corresponding effluent. <u>*Notice:</u> <u>MBR have never shown the reduction value < 2log.</u>

- The reduction of SARS-CoV-2 was mostly in range of <u>2-4 log</u> in the three processes.
- SARS-CoV-2 RNA concentration in CAS effluent was N.D-2.91 log10 copies/L.
- SARS-CoV-2 RNA concentration in <u>MBR effluent</u> was N.D-1.96 log10 copies/L.
- SARS-CoV-2 RNA concentration in A20 effluent was 0.89-3.07 log10 copies/L.

Results: LRV of CDCN1 by each process and disinfection

Figure 3. boxplot profile indicated distribution of LRV by CDCN1 in (a) CAS, (b) AO-MBR process and (c) A2O process. *chlorination represent minimum LRV, the real total LRV is higher than this min total LRV. *<u>Notice: MBR have never shown the</u> <u>reduction value < 2 logs.</u>

- LRV of CDCN1 by MBR process (3.5 ± 0.65 log) was more stable than CAS process (3.1 ± 1.1 log).
- LRV of CDCN1 by A20 process (2.5 ± 1.2 log) was not significantly different from CAS process (3.1 ± 1.1 log)

Results: comparison with other studies

Table 2. comparison of removal of SARS-CoV-2 in various wastewater treatment processes.

Country	Treatment processes In WWTPs	Concentration in influent (log10 copies/L)	Concentration in effluent (log10 copies/L)	Log removal value (LRV) (Log10 copies/L)	References	
Japan	CAS	3.73-5.99	0.80-2.91	3.1±1.1		
	MBR	3.73-5.99	1.16-1.96	3.5±0.65	My study	
	A2O	3.26-4.41	0.86-3.07	2.5±1.2		
	chlorination	1.15-2.86	<0.83-1.30	>0.97±0.50		
	Activated sludge	3.29±0.67	2.26±0.47	1.03±0.59		
Spain, France	Activated sludge plus nutrient removal	3.65±0.68	2.28±0.70	1.37±0.72	Serra-Compte et al., 2021	
	MBR	3.89±0.89	2.13±0.35	1.96±0.93		
India	CAS	3.17	2.40	0.77		
	chlorination	3.17	2.46	0.71	Kumar et al., 2021	
	UASB	3.54	<loq (2.23)<="" td=""><td>>1.3</td><td>Kumar et al., 2021</td></loq>	>1.3	Kumar et al., 2021	
Paris	WWTPs	4-7	ND-5	2	Wurtzer et al., 2020a	
Spain	Secondary treatment (activated sludge/A2O/extended aeration), disinfection, NaClO/UV	<3.53	<3.40	>0.1	Randazzo et al., 2020b	

Wastewater treatment plant=WWTPs, Membrane bioreactor=MBR, Conventional activated sludge= CAS, Anaerobic-anoxic –oxic=A2O, Upflow Anaerobic Sludge Blanket=UASB, Limit of quantification=LOQ

Results: potential of PMMoV as a performance indicator

Purpose of **performance indicator virus** in wastewater

• To check the removal performance of the target virus in wastewater independent of outbreak situation in the sewershed.

Three requirements for performance indicator virus

- 1. To be abundant in wastewater
- 2. To have high concentration to be detected after treatment.
- 3. LRV is consistently lower than the target virus.

Results: potential of PMMoV as a performance indicator

Figure 4. Time series change with influent and effluent of PMMoV concentration (log10 copy/L).

✓ 1. PMMoV is always abundant in wastewater.

✓ 2. PMMoV is present at high concentration to be detected after treatment.

Results: potential of PMMoV as a performance indicator

Conclusions

- ✓ The <u>total LRV</u> after disinfection was <u>3.5 log or higher</u>, which was higher than typical LRV of nonenveloped enteric virus.
- ✓ The <u>removal of SARS-CoV-2 in secondary treatment</u> by <u>MBR</u> (3.5 ± 0.65 log) was <u>more</u> <u>stable</u> than <u>CAS</u> process (3.1 ± 1.1log)
- ✓ The <u>removal of SARS-CoV-2 in secondary treatment</u> by <u>A20</u> process (2.5 ± 1.2 log) was not significantly different from <u>CAS</u> process (3.1 ± 1.1log).
- ✓ **<u>PMMoV</u>** is a good indicator virus to evaluate removal of SARS-CoV-2 in WWTP.

Acknowledgements

- JST CREST (Grant No. JPMJCR20H1)
- JSPS KAKENHI (Grant No. 19H02272)
- Grants by Hiramoto-Gumi Inc. and I-Tech Muramoto Co. Ltd.

Contact Information

- Presenter: Rongxuan Wang <u>Email</u>: xawrxy@yahoo.co.jp
- **Corresponding Author**: Ryo Honda **Email**: rhonda@se.Kanazawa-u.ac.jp

Supplementary: LRV by CAS, MBR and A2O

Figure 1. CDCN1 concentrations in effluent and log removal values (LRV) in (a) CAS and (b) MBR process. The blank mark means below the LOD (undetected). series 1 influent concentration in CAS and MBR process, series 2 influent concentration in A2O process.

Supplementary: effluent concentration of CAS, MBR, A2O

Supplementary: removal of enteric virus in wastewater

Virus Process of WWTPs Concentration in influent Concentration in final LRV (log References (copies/L) effluent (copies/L) reduction) (A) Wastewater Treatment Systems 99-101 $4 \times 10^{4} - 8.2 \times 10^{9}$ $1.4 \times 10^{2} - 2.5 \times 10^{4}$ CAS GI-Norovirus 0.50-2.87 $10^{6} - 10^{9}$ $1 \times 10^{3} - 1 \times 10^{4}$ 102-105 MBR 2.40-4.30 $1 \times 10^{1} - 1 \times 10^{3}$ 1×10^{2} 106-108 A20 1-2 100,108 $1.5 \times 10^{1} - 1 \times 10^{5}$ $1 \times 10^{-1} - 1.5 \times 10^{3}$ Trickling filter 1.5 - 3.5 $1 \times 10^{1} - 1 \times 10^{9}$ $1.4 \times 10^{2} - 2.5 \times 10^{7}$ 103,108 WSP 0.5 - 299-101 $4 \times 10^{2} - 8.2 \times 10^{9}$ $1.4 \times 10^{-1} - 2.5 \times 10^{3}$ CAS 1.5 - 3GII-Norovirus $10^{5} - 10^{8}$ $1 \times 10^{2} - 1 \times 10^{3}$ 102-105 MBR 1.1 - 5.3 $1 \times 10^{1} - 1 \times 10^{3}$ 1×10^{2} 106-108 1-2 A20 $1.5 \times 10^{1} - 1 \times 10^{5}$ $1 \times 10^{-1} - 1.87 \times 10^{4}$ 100,108 Trickling filter 2.5-3.5 $1.5 \times 10^{2} - 1 \times 10^{7}$ $1 \times 10^{-1} - 1 \times 10^{6}$ 103,108 WSP 0.5-1.5 $1 \times 10^{4} - 1.5 \times 10^{5}$ $1.4 \times 10^{-1} - 2.5 \times 10^{1}$ 100 CAS GIV-Norovirus-4-5 100,108 $1.5 \times 10^{3} - 1 \times 10^{5}$ $1 \times 10^{-1} - 1.87 \times 10^{3}$ Trickling filter 2-4 106 2-3 Murine Norovirus CAS 106 1 - 3MBR 106 A20 0-1 $1 \times 10^{6} - 1 \times 10^{10}$ 100,109 $1 \times 10^{5} - 2.5 \times 10^{9}$ **PMMoV** CAS 2-3 $1 \times 10^{5} - 1 \times 10^{6}$ $1 \times 10^{3} - 1 \times 10^{4}$ 110 0.70 - 2MBR 100 $1 \times 10^{5} - 1 \times 10^{6}$ $1 \times 10^{5} - 2.5 \times 10^{5}$ Trickling filter 0.5 - 1 $1 \times 10^{2} - 1 \times 10^{6}$ $1 \times 10^{0} - 2.5 \times 10^{1}$ 105,111 Adenovirus CAS 2-3 $1 \times 10^{3} - 1 \times 10^{6}$ $1 \times 10^{1} - 1 \times 10^{3}$ 104,111,112 MBR 3.7-5.6 $1 \times 10^{5} - 1 \times 10^{6}$ $1 \times 10^{4} - 1 \times 10^{5}$ 104 0.4-1.6 A20 $1 \times 10^{5} - 1 \times 10^{6}$ $1 \times 10^{4} - 1 \times 10^{5}$ 100 Trickling filter 0.5-2 $1 \times 10^{1} - 1 \times 10^{2}$ $1 \times 10^{0} - 1 \times 10^{1}$ 108 WSP 0.7 - 1 $1 \times 10^{4} - 1 \times 10^{6}$ $1 \times 10^{0} - 2.5 \times 10^{1}$ 100,112 Enterovirus CAS 0.5 - 2.5 $1 \times 10^{3} - 1 \times 10^{5}$ $1 \times 10^{2} - 1 \times 10^{3}$ 99,105,106,112,113 MBR 1.52-3.89 $1 \times 10^{2} - 1 \times 10^{5}$ $1 \times 10^{3} - 1 \times 10^{4.5}$ 106 A20 0.5 - 1 $1 \times 10^{5} - 1 \times 10^{6}$ $1 \times 10^{2} - 1 \times 10^{3}$ 100 2.5 - 3Trickling filter

Table 2. Summary of virus concentration and log removal values in various (A) wastewater treatment, and (B) disinfection processes.

Supplementary: parameters VS LRV by CDCN1 in CAS, MBR, A2O

PEG precipitation with centrifuge • 2-step RT-qPCR in influent

Total virus concentration in wastewater

$$C_0 = \frac{X_p}{V_0} = \frac{X_t}{V_t} \cdot \frac{V_p}{V_p'} \cdot \frac{V_e}{V_e'} \cdot \frac{V_{RT}}{V_0}$$

Concentration factor by PEG precipitation: $\frac{V_0}{V_p}$

Concentration factor by RNA extraction: $\frac{V_{p'}}{V_e}$

Dilution factor by RT:
$$\frac{V_e'}{V_{RT}}$$

PEG precipitation without centrifuge 2-step RT-qPCR in effluent

Dilution factor by RT: $\frac{V_{e'}}{V_{RT}}$